OWTNM 2015

23rd International Workshop on Optical Wave & Waveguide Theory and Numerical Modelling 17-18 April, 2015 – London, UK

Modelling optical bistability with hybrid silicon-plasmonic resonators

O. Tsilipakos, T. Christopoulos, G. Sinatkas, E. E. Kriezis Dept. of Electrical and Computer Engineering, Aristotle University of Thessaloniki

Scope

■ Nonlinear control in guided-wave plasmonics

- \square Sub- λ confinement
- Resistive losses

Hybrid plasmonic waveguides (best compromise)

[Oulton, Nat. Photon. 2, 2008] [Wu, Opt. Express 18, 2010]

Ultrafast phenomena

- ☑ Kerr (third-order susceptibility)
- ☑ Free carrier dispersion (w/ carrier sweeping)

■ Nonlinear directional coupler

[Milián, APL 98, 2011] [Kriesch, CLEO/QELS 2012] [Pitilakis, JOSA B 30, 2013]

Resonator enhanced... → **Optical bistability**

Presentation outline

■ Nonlinear Travelling-Wave Resonator Structure

- Physical system: Side-coupled disk
- Perturbation Theory & CMT Framework
- Effect of Model Parameters on Bistability Curve
- System Design
- CW Performance Assessment
- Temporal response

■ Nonlinear Standing-Wave Resonator Structure

- Physical system: Side-coupled Bragg resonator
- System Design
- CW Performance Assessment
- Temporal response

Nonlinear hybrid plasmonic waveguide (NLCGS)

- □ CGS with nonlinear polymer **DDMEBT** $(n_2 = 1.7 \times 10^{-17} \text{ m}^2/\text{W})$
 - Silver for lower resistive losses

- ☑ Strong confinement: $A_{eff} \sim 0.05 \mu m^2$
- ☑ High nonlinear coefficient: $\gamma_{wg} \sim 1500 \text{ W}^{-1}\text{m}^{-1}$
- $Arr L_{prop} \sim 80 \ \mu m \rightarrow$ Small effective length
- lacksquare 44 W for directional coupler switching \rightarrow ... resonator enhanced

Presentation outline

■ Nonlinear Travelling-Wave Resonator Structure

- Physical system: Side-coupled disk
- Perturbation Theory & CMT Framework
- Effect of Model Parameters on Bistability Curve
- System Design
- CW Performance Assessment
- Temporal response

■ Nonlinear Standing-Wave Resonator Structure

- Physical system: Side-coupled Bragg resonator
- System Design
- CW Performance Assessment
- Temporal response

NLCGS-based travelling-wave resonators

- ☐ Disk: Reduced radiation losses compared to ring
- □ *Donut*: For **suppressing unwanted modes** of the disk

Nonlinear disk resonator structure

Nonlinear disk side-coupled to CGS bus waveguide

- \square Disk: Reduced radiation losses \rightarrow Higher Q
- ☐ **Intensity build-up** in resonator → Nonlinearity enhancement
- □ Compact structure

[Tsilipakos, JOSA B 31, 1698, 2014]

Nonlinear disk resonator structure: Optical bistability

Nonlinearity + optical feedback → Hysteresis loop (bistability)

Prerequisite:

$$\omega_{\rm op} < \omega_{\rm res}$$
 since $\Delta \omega_{\rm res} < 0$

Increase in transmission

"Lorentzian" dependence of transmission on $\Delta\omega_{\rm res}$ o hysteresis loop

Dept. of Electrical & Computer Engineering | Aristotle University of Thessaloniki Photonics Group | www.photonics.ee.auth.gr

Modelling Framework

Modelling Framework

Perturbation Theory

Uncoupled nonlinear resonator

- \Box Linear regime: Unperturbed resonant frequency ω_0
- \square Nonlinear regime: Frequency shift $\Delta \omega$ due to nonlinear self-action

$$\frac{\Delta\omega}{\omega_0} = -c_0 \left(\frac{\omega_0}{c_0}\right)^3 \kappa \, n_2^{\rm max} \, W$$

[Bravo-Abad, JLT 25, 2007]

- Proportional to stored energy W
- Proportional to **nonlinear feedback parameter** κ ($\propto 1/V_{\rm eff}$)
 - Measure of mode overlap w/ nonlinear material

$$\kappa = \left(\frac{c_0}{\omega_0}\right)^3 \frac{\iiint_V \frac{1}{3} n_2(\mathbf{r}) n^2(\mathbf{r}) \left[\left(\mathbf{E}_0 \cdot \mathbf{E}_0\right) \left(\mathbf{E}_0^* \cdot \mathbf{E}_0^*\right) + 2 \left|\mathbf{E}_0\right|^4 \right] dV}{\left[\iiint_V n^2(\mathbf{r}) \mathbf{E}_0 \cdot \mathbf{E}_0^* dV\right]^2 n_2^{\text{max}}}$$

- **Redshift** ($\Delta \omega < 0$) for $n_2 > 0$
- From linear full-wave simulation (3D-VFEM)

Temporal coupled mode theory (CMT)

$$\frac{da}{dt} = j \left(\omega_0 + \Delta \omega \right) a - \frac{1}{\tau_i} a - \frac{1}{\tau_e} a + \mu s_i$$

a(t) cavity amplitude, $|a(t)|^2 = W$

 ω_0 unperturbed resonant frequency

 $\Delta\omega$ nonlinear frequency shift

 τ photon lifetime, $\tau=2Q/\omega$

 μ coupling coefficient, $\mu = (2/\tau_e)^{1/2}$

s w/g mode amplitudes, $|s|^2=P$

$$s_t = s_i + \mu a$$

□ Steady-state response

$$T \equiv \frac{P_{\rm out}}{P_{\rm in}} = \frac{(1-r_Q)^2 + (\overline{\delta} - \tau_i \Delta \omega)^2}{(1+r_Q)^2 + (\overline{\delta} - \tau_i \Delta \omega)^2}$$

> Cannot construct loop since $\Delta \omega$ ∝ W!

Quality factor ratio

$$\mathit{r_{Q}} = \mathit{Q_{i}} \, / \, \mathit{Q_{e}} = \tau_{i} \, / \, \tau_{e}$$

Normalized detuning

$$\overline{\delta} = \tau_i(\omega - \omega_0)$$

Closed-form relation for CW nonlinear response

$$\left. \begin{array}{l} W = Q_i \frac{P_{\rm in} - P_{\rm out}}{\omega_0} \\ \frac{\Delta \omega}{\omega_0} = -c_0 {\left(\frac{\omega_0}{c_0}\right)}^3 \kappa \, n_2^{\rm max} \, W \end{array} \right\} \tau_i \Delta \omega = -\frac{P_{\rm in} - P_{\rm out}}{P_0} \\ \left. \begin{array}{l} System \ characteristic \ power \\ P_0 = \frac{1}{2 {\left(\frac{\omega_0}{c_0}\right)}^2 \kappa Q_i^2 n_2^{\rm max}} \end{array} \right\} \frac{1}{\kappa Q_i^2}$$

$$P_{0} = rac{1}{2igg(rac{arOmega_{0}}{c_{0}}igg)^{\!2} \kappa Q_{i}^{2} n_{2}^{
m max}} \propto rac{1}{\kappa Q_{i}^{\!2}}$$

$$T \equiv \frac{p_{\text{out}}}{p_{\text{in}}} = \frac{(1 - r_Q)^2 + (\overline{\delta} + p_{\text{in}} - p_{\text{out}})^2}{(1 + r_Q)^2 + (\overline{\delta} + p_{\text{in}} - p_{\text{out}})^2}$$

[Tsilipakos, JOSA B 31, 2014]

- Closed-form relation
- Allows for constructing the hysteresis loop
- Admits three real solutions (for appropriate p_{in} levels)
- Detuning threshold:

$$\overline{\delta} < \overline{\delta}_{\mathrm{th}} = -(1 + r_Q)\sqrt{3}$$

Comparison with full-wave nonlinear simulation (CW)

2D Si Structures

TW resonator

Normalized Output Power $p_{ ext{out}}$

- SW, side coupling
- III. SW, direct coupling

 $P_{\rm in}$

Dept. of Electrical & Computer Engineering | Aristotle University of Thessaloniki Photonics Group | www.photonics.ee.auth.gr

Effect of Model Parameters

Detuning: Effect on bistability curve

- \Box $r_Q = 1$ (critical coupling) | Same trends for any r_Q value
- $\Box \delta = \{-1.2|\delta_{th}|, -1.7|\delta_{th}|, -2.2|\delta_{th}|\}$

Increase in $|\delta|$

- **☒** Higher input power required
- ☐ Loop span increases
- ☑ Higher maximum transmission

Quality factor ratio: Effect on bistability curve

 \Box $r_o < 1$ regime $\{1.0, 0.5, 0.2\}$

Decreasing r_o below 1:

- ☑ Higher input power required
- $oxed{oxed{oxed{\oxed}{\oxed}}}$ T_{\min} increases (loop elevation)
- ☐ Loop span increases
- \square Higher T_{max}

 \Box $r_o > 1$ regime {1.0, 2.0, 3.0}

Increasing r_Q above 1:

- Higher input power required
- oxdots T_{\min} increases (loop elevation)
- Loop span decreases
- \blacksquare Lower T_{max}

To recapitulate...

Optimum parameters – Design specifications

- Detuning close to respective threshold
 - Loop appears for lower input power
- \Box Critical coupling ($r_{\rm O} = 1$)
 - ER between bistable states is infinite
 - Deviating from $r_0 = 1 \rightarrow ER$ degradation
- \Box Minimum characteristic power P_0

Dept. of Electrical & Computer Engineering | Aristotle University of Thessaloniki Photonics Group | www.photonics.ee.auth.gr

Physical System Design

The uncoupled disk as an eigenvalue problem: P_0 minimization

Parametric analysis w.r.t. radius R

- \square $R < 0.7 \rightarrow$ Significant rad. losses $|R > 1.5 \rightarrow Q$ bound by res. losses
- ☐ Each marker corresponds to different azimuthal order
- **Minimum** P_0 or maximum κQ_i^2 product
- \square κ , Q_i : **Opposing trends** with radius

Optimum value: $R = 1 \mu m$

- $\square \kappa = 2.7 \times 10^{-3} \mid Q_i = 1750$
- $\Box P_0 = 215 \text{ mW}$

The uncoupled disk as an eigenvalue problem: Resonant mode

□ Resonant mode (R = 1 μ m, m = 9, λ_{res} = 1553 nm)

- Strong confinement: V_{eff} ~ 0.5 μm³
- Excellent overlap w/ nonlinear material
- Plasmonic nature (peaks at interface)

The coupled disk as an eigenvalue problem: Critical coupling

Parametric analysis w.r.t. coupling gap g

- \Box **Loaded** quality factor Q_I
- □ **External** quality factor: $Q_e^{-1} = Q_i^{-1} Q_i^{-1}$
- \Box Quality factor **ratio** $r_Q = Q_i/Q_e$

Critical coupling $(r_Q=1) \rightarrow g = 225 \text{ nm}$

To recapitulate...

Physical system design

- \square min{ P_0 } \rightarrow R = 1 μ m
- \Box $r_{\rm O} = 1 \rightarrow g = 225 \text{ nm}$
- δ = -5.2 (1.5 δ_{th}) \rightarrow **\lambda** = **1555.3 nm** (2.3 nm above λ_0 = 1553 nm)

Dept. of Electrical & Computer Engineering | Aristotle University of Thessaloniki Photonics Group | www.photonics.ee.auth.gr

Performance Assessment

Bistability curve

Physical system

- \square $R = 1 \mu m$
- □ g = 225 nm
- $\Box \lambda = 1555.3 \text{ nm}$

Performance

- \Box $P_{in} \sim 1W$ for bistability $(P_A = 1.12 \text{ W})$
- \square ER $\rightarrow \infty$ @ P_A
- ☐ IL ~ 1 dB @ point A
- □ Points B, C for toggling between bistable states A, A'

Temporal response

- □ Initially $P_{in} = P_A \rightarrow \text{System at high-output}$ state
- □ 2nd-order **super-Gaussian pulses** (FWHM = 2.25 ps) for **toggling state**
 - 1st pulse (peak) → ABA' → low-output state
 - 2^{nd} pulse (dip) $\rightarrow A'CA \rightarrow high-output$ state

- \square **5 ps** ($\sim 3\tau_1$) for settling at new state
- ☑ Toggling frequency up to 100 GHz!

Presentation outline

■ Nonlinear Travelling-Wave Resonator Structure

- Physical system: Side-coupled disk
- CMT + Perturbation Theory Framework
- Effect of Model Parameters on Bistability Curve
- System Design
- CW Performance Assessment
- Temporal response

■ Nonlinear Standing-Wave Resonator Structure

- Physical system: Side-coupled Bragg resonator
- System Design
- CW Performance Assessment
- Temporal response

Nonlinear Bragg grating resonator

Bragg grating resonator

- □ **16-period** reflectors (~5µm long) (reflectivity-compactness compromise)
- Design procedure
 - Specify (*W*, *w*, *L*) parameters
 - Optimum performance (min{P₀}, max{ER})

CMT framework

 \square Slightly different r_Q , P_0 definitions

$$r_Q^{} = Q_e^{} / Q_i^{}$$
 $P_0^{} \propto (\kappa Q_e^2)^{-1}$

Hysterisis loop

- \Box $r_{\rm O} \rightarrow 0$ for high ER
- \Box But P_0 increases ...

Dept. of Electrical & Computer Engineering | Aristotle University of Thessaloniki Photonics Group | www.photonics.ee.auth.gr

Physical System Design

The uncoupled resonator

Width engineering

- $\Box L = \lambda_q/2$
- Narrow cavity widths
 - *W* < 250nm
- \Box (*W*, *w*) = (200nm, 120nm)

Length engineering

- ☐ Third-order mode
- ☐ Reduced rad. losses (const res. losses)
- \Box L ~ 1µm (3 λ_q /2)

The uncoupled resonator: Resonant mode

Resonant mode

$$\Box$$
 m = 3, λ_{res} = 1550 nm

$$\Box V_{\text{eff}} = 0.1 \, \mu \text{m}^3$$

$$Q_i = 500$$

- limited by $Q_{\text{res}} = 560$
- \square $P_0 \sim 1.5 \text{ W } (r_0 = 0.3) \text{ (x6)}$
 - $\kappa = 2.5 \times 10^{-2}$ (x10)
 - $Q_{\rm e} = 150$ (÷11)

Coupled resonator

Coupled Bragg resonator

- □ Coupling gap *g*
- ☐ Curved access waveguide
- □ 2-µm radius quadrants

Parametric analysis w.r.t. gap g

- \Box **Loaded** quality factor Q_I
- □ **External** quality factor: $Q_e^{-1} = Q_i^{-1} Q_i^{-1}$
- \Box Quality factor **ratio** $r_O = Q_e / Q_i$

$$r_Q = 0.3 \rightarrow g = 200 \text{ nm}$$

To recapitulate...

Physical system design

$$W = 200 \text{ nm}$$

$$\square \min\{P_0\} \rightarrow \begin{cases} W = 200 \text{ nm} \\ w = 120 \text{ nm} \\ L = 1 \text{ } \mu\text{m} \end{cases}$$

$$L = 1 \mu m$$

$$\Box r_Q = 0.3 \rightarrow g = 200 \text{ nm}$$

Dept. of Electrical & Computer Engineering | Aristotle University of Thessaloniki Photonics Group | www.photonics.ee.auth.gr

Performance Assessment

Bistability curve

Physical system

- $\Box L = 1 \mu m$
- □ W = 200 nm
- \Box *w* = 120 nm
- $\Box g = 200 \text{ nm}$

Performance

- □ **P**_{in} ~ **8W** for bistability
- \Box ER \sim 12 dB @ P_A
- ☐ IL < 1 dB @ point A
- □ Points B, C for toggling between bistable states A, A'

Temporal response

- \square 2nd-order super-Gaussian pulses ($T_0 = 0.5 \text{ ps}$) for toggling state
 - 1st pulse (peak) \rightarrow ABA' \rightarrow low-output state
 - 2^{nd} pulse (dip) $\rightarrow A'CA \rightarrow high-output$ state

- ☑ 2 ps for settling at new state
- ☑ Toggling frequency > 100 GHz!

Conclusion

□ Summary

- Practical plasmonic components for Kerr bistability
 - Travelling- or standing-wave resonator implementations
- Reduced power requirements w.r.t. directional coupler approach
- High extinction ratio (side coupling)
- Ultrafast response

□ To probe further ...

- Impact of free-carrier effects (Si layer)
 - Important, despite the limited mode overlap with Si
 - Dominate over Kerr in CW ($\Delta\omega^{FCD} >> \Delta\omega^{Kerr}$ & strong FCA)
 - Pulsed regime: sweeping for suppressing FCA
- FCD bistability
- Thermal bistability
 - TPA, FCA, Joule heating

Thank you!

This work has been supported by the Research Committee of the Aristotle University of Thessaloniki through a postdoctoral research scholarship.

This research has been co-financed by the European Union (European Social Fund) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework. Research Funding Program: THALES (Project ANEMOS). Investing in knowledge society through the European Social Fund.

